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Introduction
Our method of monitoring ecosystem performance can help scientists and land managers understand 
changes in the productivity of ecosystems over large areas. We use the Normalized Difference Vegetation 
Index (NDVI) as a surrogate for ecosystem productivity. By itself, a time series of NDVI is strongly 
influenced by year-to-year variations in climatic conditions (temperature and moisture). Climatic 
variability makes it difficult to detect the variations that are caused by nonclimatic effects such as 
land management, insect infestations, fires, and changing soil conditions associated with permafrost 
degradation. We develop a model of the expected ecosystem performance on a sample of image pixels 
and account for site potential and yearly variations in climate. We then compare the results of the model 
with the actual NDVI for a growing season and highlight areas that are performing better or worse than 
expected. The result is a powerful technique for detecting perturbations to ecosystems. The method is 
applicable to many types of ecosystems and many different disturbances, particularly to water-limited 
systems which may experience large interannual variations. Three successful prototype studies are 
illustrated here.

The methods are ready to become operational, forming a basis for a national plan for ecosystem 
monitoring, which in turn is needed to understand how to develop policies in response to changing natural 
and socioeconomic conditions.

Methods
The NDVI* for this method can be computed from coarse or moderate resolution sensors, including 
the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging 
Spectroradiometer (MODIS), or SPOT VEGETATION. NDVI has been used as a surrogate for 
photosynthetic activity (Goetz et al. 2005) and has been shown to be correlated with biomass (Wylie et 
al. 1991) and carbon fluxes (Gilmanov et al. 2005). We use the growing season NDVI (GSN) as a proxy 
for yearly ecosystem performance. The GSN is the integral under a curve of NDVI for a growing season. 
Sensors with moderate spatial resolution have a high enough temporal resolution to have a meaningful 
integration over time. The GSN for each year and a long-term GSN are computed for each pixel. With a 
substantial period of record of remotely sensed data and powerful statistical techniques, we are able to 
identify trends in ecosystem performance for the entire period or for targeted segments of time.

*NDVI is the difference between the infrared and red reflectance values normalized by dividing by the sum of the infrared and red reflectances.

To build the model for expected ecosystem 
performance, a large number (5,000 to 10,000) 
of random points within a land cover type are 
selected, and image data are extracted for multiple 
years (fig. 1). 
These random points are stratified to get equivalent 
representation of high, medium, and low values of 
GSN. Data on climate and site potential are also 
developed for the selected points.  The resulting 
database represents the spatial and temporal 
variability of GSN in the study area and includes 
variables that explain the environmental conditions 
that affect ecosystem performance. If site potential 
estimates are not directly available (e.g., from 
soil maps), we estimate site potential using a 
long-term average GSN and other nonclimatic 
variables. Seasonal summaries of climatic data are 
aggregated from monthly datasets (PRISM†).

†Parameter-elevation Regressions on Independent Slopes

Figure 1. A schematic view of selecting random points (  ) in the 
northern Great Plains grasslands.

The expected ecosystem performance is operationally defined in terms of a modeled GSN. The model is fit 
to site potential variables (including elevation, slope, aspect, soil, and other regional datasets) and to climate 
variables (fig 2). By fitting the model for both productive (wet) and less productive (dry) years, the model is 
robust for estimating ecosystem performance for pixels that are not used in the training dataset (Wylie et 
al. submitted).

Methods continued

Figure 2. Model inputs for estimating multiyear and multisite GSN.
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Modeled GSN  =  f (site potential, climate)

We use machine learning techniques based on 
regression trees to derive piecewise regression models 
(Cubist software). Variables used to predict GSN 
can serve to divide the modeling domain (e.g., Rule 
1/1, pptspr less than or equal to 21) or to act as an 
independent variable in the regression equations for 
the rules (fig. 3). Long-term NDVI was used as a 
proxy for site potential in this model. Regression tree 
or piecewise regressions are relatively insensitive
to outliers.

We find areas of ecosystems that are performing 
differently than expected by comparing (fig. 4) the 
actual GSN values (y-axis) to the modeled GSN 
values (x-axis). Anomalies below the lower 90 percent 
confidence interval (magenta) are performing at a 
lower level than expected based on climatic conditions. 
Anomalies above the upper 90 percent confidence 
interval (green) exceed the expected performance 
based on climatic conditions. The zone between the 90 
percent confidence limits (buff) represents variation 
that is not statistically significant.

For each year in the study, we make maps of expected 
GSN and the performance anomaly. We evaluate 
trends by mapping the frequency of overperformance 
or underperformance across a set of years. By fitting 
a linear regression to the anomaly measures through 
time, we can identify statistically significant changes 
in ecosystem performance. These trends in the 
performance anomaly may be related to degradation, 
natural hazards, plant succession, stressed ecosystems, 
or management (e.g., agricultural practices).

Figure 3. Example piecewise regression model.

 Rule 1/1: [1077 observations]
    if   pptspr <= 21
    then 
              GSN = -10665.1 + 97 ltavg - 19 pptspr + 12 pptsum + 6 pptwin + 26tmxspr
       + 30 tmnsum
  Rule 1/2: [930 observations]
    if ltavg <= 141 and pptspr > 21
    then
              GSN = -8927.6 + 93 ltavg + 54 tmxwin + 9 pptsum - 24 tmxsum - 5 pptspr
       + 3 pptwin - 28 tmnspr
  Rule 1/3: [998 observations]
    if ltavg > 141
    then
             GSN = -6371.6 + 74 ltavg + 11 pptwin - 55 tmxsum + 46 tmxspr + 57 tmxwin
       + 7 pptsum
  Where:           GSN    = growing season NDVI
                          ltavg  = long-term average GSN 
                          pptspr = precipitation in spring
                          pptsum = precipitation in summer
                          pptwin =precipitation in winter
                          tmxspr = maximum temperature in spring
                          tmxwin =maximum temperature in winter
                          tmxsum = maximum temperature in summer 
                          tmnspr = minimum temperature in spring
                          tmnsum = minimum temperature in summer

Results

Areas with underperformance in 2004 (magenta) often align with areas that burned between 1996 
and 2004 (fig. 5, left panel). In some areas, a decreasing trend (1996 to 2004) was observed although 
there were no recent fires (fig. 5, center panel). The negative trend in anomalies may identify recent 
insect infestations. Future work will model the entire basin in cooperation with the Canada Centre for 
Remote Sensing.

Yukon River Basin

Figure 5. Performance anomalies in 2004 in the Yukon River Basin (left), trends in the anomalies for a selected area (center), and Landsat 
images for the selected area (right).

Wyoming Sagebrush
Areas with degraded lands (overgrazing, mining) were 
underperforming, and areas with tree and shrub mixtures were typically 
overperforming (fig. 6). Validation with Landsat-derived estimates of 
bare ground agreed with underperforming areas 66 percent of the time. 
The model captured the essential site potential and climatic variables 
for this ecosystem (R2 = 0.96).

Idaho Sagebrush Steppe
Different models were developed for grasslands and shrub areas, with 
R2  of 0.95 and 0.86, respectively. Performance anomalies highlighted 
differences in livestock intensities (fence lines are shown in fig. 7). The 
relationship between stocking rate data and performance anomaly was 
stronger on grassland areas (R2 = 0.94) than on shrub areas (R2 = 0.44).

Conclusions
The method presented here is robust within ecosystems and can be applied in very different 
environments (semiarid to boreal). We control for climatic variations so that nonclimate changes are 
apparent. We identify stressed areas which may be susceptible to additional change. The methods 
would support an operational national plan for ecosystem monitoring.

Figure 6. Multiple year 
frequency of performance 
anomalies in shrub 
(sagebrush) ecosystems 
of Wyoming.

Figure 7. Performance 
anomaly in 2007 for Idaho 
shrublands.

Figure 4. Defining anomalous ecosystem performance for the boreal 
forest in the Yukon River Basin (R2 = 0.84).
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